Polynomials that are positive on an interval

Author:

Powers Victoria,Reznick Bruce

Abstract

This paper discusses representations of polynomials that are positive on intervals of the real line. An elementary and constructive proof of the following is given: If h ( x ) , p ( x ) R [ x ] h(x), p(x) \in \mathbb {R}[x] such that { α R h ( α ) 0 } = [ 1 , 1 ] \{ \alpha \in \mathbb {R} \mid h(\alpha ) \geq 0 \} = [-1,1] and p ( x ) > 0 p(x) > 0 on [ 1 , 1 ] [-1,1] , then there exist sums of squares s ( x ) , t ( x ) R [ x ] s(x), t(x) \in \mathbb {R}[x] such that p ( x ) = s ( x ) + t ( x ) h ( x ) p(x) = s(x) + t(x) h(x) . Explicit degree bounds for s s and t t are given, in terms of the degrees of p p and h h and the location of the roots of p p . This is a special case of Schmüdgen’s Theorem, and extends classical results on representations of polynomials positive on a compact interval. Polynomials positive on the non-compact interval [ 0 , ) [0,\infty ) are also considered.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. S. Bernstein, Sur la représentation des polynômes positifs, Soobshch. Kharkov matem. ob-va, ser. 2, 14 (1915), 227–228.

2. Graduate Texts in Mathematics;Borwein, Peter,1995

3. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];DeVore, Ronald A.,1993

4. Estimates for the Lorentz degree of polynomials;Erdélyi, Tamás;J. Approx. Theory,1991

5. On polynomials with positive coefficients;Erdélyi, T.;J. Approx. Theory,1988

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial Optimization Over Unions of Sets;Vietnam Journal of Mathematics;2024-07-24

2. Tighter Bounds on Transient Moments of Stochastic Chemical Systems;Journal of Optimization Theory and Applications;2023-11-21

3. Sequences of resource monotones from modular Hamiltonian polynomials;Physical Review Research;2023-10-24

4. Shape-Constrained Regression Using Sum of Squares Polynomials;Operations Research;2023-09-06

5. The Bernstein Expansion for Rational Differentiable Functions in Newton Divided Differences Form;2023 International Conference on Information Technology (ICIT);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3