Tighter Bounds on Transient Moments of Stochastic Chemical Systems

Author:

Holtorf FlemmingORCID,Barton Paul I.ORCID

Abstract

AbstractThe use of approximate solution techniques for the Chemical Master Equation is a common practice for the analysis of stochastic chemical systems. Despite their widespread use, however, many such techniques rely on unverifiable assumptions and only a few provide mechanisms to control the approximation error quantitatively. Addressing this gap, Dowdy and Barton (J Chem Phys 149(7):074103, 2018) proposed an optimization-based technique for the computation of guaranteed bounds on the moment trajectories associated with stochastic chemical systems, thereby providing a general framework for rigorous uncertainty quantification. Here, we present an extension of this method. The key contribution is a new hierarchy of convex necessary moment conditions that build upon partitioning of the time domain. These conditions reflect the temporal causality that is inherent to the moment trajectories associated with stochastic processes described by the Chemical Master Equation and can be strengthened by simple refinement of the time domain partition. Analogous to the original method, these conditions generate a hierarchy of semidefinite programs that furnishes monotonically improving bounds on the trajectories of the moments and related statistics of stochastic chemical systems. Compared to its predecessor, the presented hierarchy produces bounds that are at least as tight and features new bound tightening mechanisms such as refinement of the time domain partition which often enable the computation of dramatically tighter bounds with lower computational cost. We analyze the properties of the presented hierarchy, discuss some aspects of its practical implementation and demonstrate its merits with several examples.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3