On the Construction of Converging Hierarchies for Polynomial Optimization Based on Certificates of Global Positivity

Author:

Ahmadi Amir Ali1ORCID,Hall Georgina2ORCID

Affiliation:

1. Department of Operations Research and Financial Engineering, Princeton, New Jersey 08540;

2. Decision Sciences, INSEAD, 77300 Fontainebleau, France

Abstract

In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial minimization problems have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on an arbitrary closed basic semialgebraic set. In this paper, we show that such hierarchies could in fact be designed from much more limited Positivstellensätze dating back to the early 20th century that only certify positivity of a polynomial globally. More precisely, we show that any inner approximation to the cone of positive homogeneous polynomials that is arbitrarily tight can be turned into a converging hierarchy of lower bounds for general polynomial minimization problems with compact feasible sets. This in particular leads to a semidefinite programming–based hierarchy that relies solely on Artin’s solution to Hilbert’s 17th problem. We also use a classical result from Pólya on global positivity of even forms to construct an “optimization-free” converging hierarchy for general polynomial minimization problems with compact feasible sets. This hierarchy requires only polynomial multiplication and checking nonnegativity of coefficients of certain fixed polynomials. As a corollary, we obtain new linear programming–based and second-order cone programming–based hierarchies for polynomial minimization problems that rely on the recently introduced concepts of diagonally dominant sum of squares and scaled diagonally dominant sum of squares polynomials. We remark that the scope of this paper is theoretical at this stage, as our hierarchies—though they involve at most two sum of squares constraints or only elementary arithmetic at each level—require the use of bisection and increase the number of variables (respectively, the degree) of the problem by the number of inequality constraints plus three (respectively, by a factor of two).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3