Fractional partitions and conjectures of Chern–Fu–Tang and Heim–Neuhauser

Author:

Bringmann Kathrin,Kane Ben,Rolen Larry,Tripp Zack

Abstract

Many papers have studied inequalities for partition functions. Recently, a number of papers have considered mixtures between additive and multiplicative behavior in such inequalities. In particular, Chern–Fu–Tang and Heim–Neuhauser gave conjectures on inequalities for coefficients of powers of the generating partition function. These conjectures were posed in the context of colored partitions and the Nekrasov–Okounkov formula. Here, we study the precise size of differences of products of two such coefficients. This allows us to prove the Chern–Fu–Tang conjecture and to show the Heim–Neuhauser conjecture in a certain range. The explicit error terms provided will also be useful in the future study of partition inequalities. These are laid out in a user-friendly way for the researcher in combinatorics interested in such analytic questions.

Publisher

American Mathematical Society (AMS)

Reference38 articles.

1. Combinatorial proof of a partition inequality of Bessenrodt-Ono;Alanazi, Abdulaziz A.;Ann. Comb.,2017

2. Undergraduate Texts in Mathematics;Apostol, Tom M.,1976

3. Multiplicative properties of the number of 𝑘-regular partitions;Beckwith, Olivia;Ann. Comb.,2016

4. Maximal multiplicative properties of partitions;Bessenrodt, Christine;Ann. Comb.,2016

5. American Mathematical Society Colloquium Publications;Bringmann, Kathrin,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher order Turán inequalities for the distinct partition function;Journal of Number Theory;2024-07

2. On a General Approach to Bessenrodt–Ono Type Inequalities and Log-Concavity Properties;Annals of Combinatorics;2024-05-21

3. Partitions with multiplicities associated with divisor functions;Journal of Mathematical Analysis and Applications;2024-05

4. Turán inequalities for k-th power partition functions;Journal of Mathematical Analysis and Applications;2024-01

5. Log concavity for unimodal sequences;Research in Number Theory;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3