Abstract
AbstractIn recent literature concerning integer partitions one can find many results related to both the Bessenrodt–Ono type inequalities and log-concavity properties. In this note, we offer some general approach to this type of problems. More precisely, we prove that under some mild conditions on an increasing function F of at most exponential growth satisfying the condition $$F(\mathbb {N})\subset \mathbb {R}_{+}$$
F
(
N
)
⊂
R
+
, we have $$F(a)F(b)>F(a+b)$$
F
(
a
)
F
(
b
)
>
F
(
a
+
b
)
for sufficiently large positive integers a, b. Moreover, we show that if the sequence $$(F(n))_{n\ge n_{0}}$$
(
F
(
n
)
)
n
≥
n
0
is log-concave and $$\limsup _{n\rightarrow +\infty }F(n+n_{0})/F(n)<F(n_{0})$$
lim sup
n
→
+
∞
F
(
n
+
n
0
)
/
F
(
n
)
<
F
(
n
0
)
, then F satisfies the Bessenrodt–Ono type inequality.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. A. A. Alanazi, S. M. Gagola III, A. O. Munagi, Combinatorial proof of a partition inequality of Bessenrodt-Ono, Ann. Comb. 21 (2017), 331–337.
2. G. E. Andrews, The Theory of Partitions, the Encyclopedia of Mathematics and Its Applications Series, Addison-Wesley, New York (1976), reissued, Cambridge University Press, New York (1998).
3. G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge University Press, Cambridge, 2004.
4. N. Asai, I. Kubo, HH. Kuo, Bell Numbers, Log-Concavity, and Log-Convexity, Acta Applicandae Mathematicae 63 (2000), 79–87.
5. O. Beckwith, C. Bessenrodt, Multiplicative properties of the number of$$k$$-regular partitions, Ann. Comb. 20(2) (2016), 231–250.