Dehn fillings of knot manifolds containing essential once-punctured tori

Author:

Boyer Steven,Gordon Cameron,Zhang Xingru

Abstract

In this paper we study exceptional Dehn fillings on hyperbolic knot manifolds which contain an essential once-punctured torus. Let M M be such a knot manifold and let β \beta be the boundary slope of such an essential once-punctured torus. We prove that if Dehn filling M M with slope α \alpha produces a Seifert fibred manifold, then Δ ( α , β ) 5 \Delta (\alpha ,\beta )\leq 5 . Furthermore we classify the triples ( M ; α , β ) (M; \alpha ,\beta ) when Δ ( α , β ) 4 \Delta (\alpha ,\beta )\geq 4 . More precisely, when Δ ( α , β ) = 5 \Delta (\alpha ,\beta )=5 , then M M is the (unique) manifold W h ( 3 / 2 ) Wh(-3/2) obtained by Dehn filling one boundary component of the Whitehead link exterior with slope 3 / 2 -3/2 , and ( α , β ) (\alpha , \beta ) is the pair of slopes ( 5 , 0 ) (-5, 0) . Further, Δ ( α , β ) = 4 \Delta (\alpha ,\beta )=4 if and only if ( M ; α , β ) (M; \alpha ,\beta ) is the triple ( W h ( 2 n ± 1 n ) ; 4 , 0 ) \displaystyle (Wh(\frac {-2n\pm 1}{n}); -4, 0) for some integer n n with | n | > 1 |n|>1 . Combining this with known results, we classify all hyperbolic knot manifolds M M and pairs of slopes ( β , γ ) (\beta , \gamma ) on M \partial M where β \beta is the boundary slope of an essential once-punctured torus in M M and γ \gamma is an exceptional filling slope of distance 4 4 or more from β \beta . Refined results in the special case of hyperbolic genus one knot exteriors in S 3 S^3 are also given.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference40 articles.

1. Once-punctured tori and knots in lens spaces;Baker, Kenneth L.;Comm. Anal. Geom.,2011

2. Studying links via closed braids. III. Classifying links which are closed 3-braids;Birman, Joan S.;Pacific J. Math.,1993

3. Characteristic subsurfaces and Dehn filling;Boyer, Steve;Trans. Amer. Math. Soc.,2005

4. Characteristic subsurfaces, character varieties and Dehn fillings;Boyer, Steve;Geom. Topol.,2008

5. Dehn fillings of large hyperbolic 3-manifolds;Boyer, S.;J. Differential Geom.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori;Memoirs of the American Mathematical Society;2024-03

2. Characterizing slopes for torus knots, II;Journal of Knot Theory and Its Ramifications;2023-03

3. Characterizing slopes for torus knots;Algebraic & Geometric Topology;2014-04-07

4. Characteristic submanifold theory and toroidal Dehn filling;Advances in Mathematics;2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3