Characterizing slopes for torus knots, II

Author:

Ni Yi1ORCID,Zhang Xingru2

Affiliation:

1. Department of Mathematics, Caltech, 1200 E California Blvd, Pasadena, CA 91125, USA

2. Department of Mathematics, University at Buffalo, 111 Mathematics Building, UB North Campus, Buffalo NY, 14260-2900, USA

Abstract

A slope [Formula: see text] is called a characterizing slope for a given knot [Formula: see text] if whenever the [Formula: see text]-surgery on a knot [Formula: see text] is homeomorphic to the [Formula: see text]-surgery on [Formula: see text] via an orientation preserving homeomorphism, then [Formula: see text]. In a previous paper, we showed that, outside a certain finite set of slopes, only the negative integers could possibly be non-characterizing slopes for the torus knot [Formula: see text]. More explicitly besides all negative integer slopes there are [Formula: see text] slopes which were unknown to be characterizing for [Formula: see text], including [Formula: see text] nontrivial [Formula: see text]-space slopes. Applying recent work of Baldwin–Hu–Sivek, we improve our result by showing that a nontrivial slope [Formula: see text] is a characterizing slope for [Formula: see text] if [Formula: see text] and [Formula: see text]. In particular every nontrivial [Formula: see text]-space slope of [Formula: see text] is characterizing for [Formula: see text]. More explicitly this work yields [Formula: see text] new characterizing slopes for [Formula: see text]. Another interesting consequence of this work is that if a nontrivial [Formula: see text]-surgery on a non-torus knot in [Formula: see text] yields a manifold of finite fundamental group, then [Formula: see text].

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small Dehn surgery and SU(2);Geometry & Topology;2024-07-18

2. Characterizing slopes for 52$5_2$;Journal of the London Mathematical Society;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3