On fields with Property (B)

Author:

Amoroso Francesco,David Sinnou,Zannier Umberto

Abstract

Let K K be a number field and let L / K L/K be an infinite Galois extension with Galois group G G . Let us assume that G / Z ( G ) G/Z(G) has finite exponent. We show that L L has the Property (B) of Bombieri and Zannier: the absolute and logarithmic Weil height on L L^* is bounded from below outside the set of roots of unity by an absolute constant. We also discuss some features of Property (B): stability by algebraic extensions and relations with field arithmetic. As a side result, we prove that the Galois group over Q \mathbb {Q} of the compositum of all totally real fields is torsion free.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Minoration de la hauteur normalisée dans un tore;Amoroso, Francesco;J. Inst. Math. Jussieu,2003

2. A lower bound for the height in abelian extensions;Amoroso, Francesco;J. Number Theory,2000

3. Algebraic numbers of small Weil’s height in CM-fields: on a theorem of Schinzel;Amoroso, Francesco;J. Number Theory,2007

4. A relative Dobrowolski lower bound over abelian extensions;Amoroso, Francesco;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),2000

5. A uniform relative Dobrowolski’s lower bound over abelian extensions;Amoroso, Francesco;Bull. Lond. Math. Soc.,2010

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Widmer’s criteria for the Northcott property;Proceedings of the American Mathematical Society;2024-09-04

2. Bogomolov property of some infinite nonabelian extensions of a totally $v$-adic field;Acta Arithmetica;2024

3. On the Northcott property for special values of L-functions;Revista Matemática Iberoamericana;2023-12-14

4. A new way to tackle a conjecture of Rémond;Canadian Journal of Mathematics;2023-10-31

5. Lower bounds for the house in some radical extensions;The Ramanujan Journal;2023-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3