Multi-bump orbits homoclinic to resonance bands

Author:

Kaper Tasso,Kovacic Gregor

Abstract

We establish the existence of several classes of multi-bump orbits homoclinic to resonance bands for completely-integrable Hamiltonian systems subject to small-amplitude Hamiltonian or dissipative perturbations. Each bump is a fast excursion away from the resonance band, and the bumps are interspersed with slow segments near the resonance band. The homoclinic orbits, which include multi-bump Šilnikov orbits, connect equilibria and periodic orbits in the resonance band. The main tools we use in the existence proofs are the exchange lemma with exponentially small error and the existence theory of orbits homoclinic to resonance bands which make only one fast excursion away from the resonance bands.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference66 articles.

1. Proceedings of the Steklov Institute of Mathematics, No. 90 (1967);Anosov, D. V.,1969

2. Instability of dynamical systems with many degrees of freedom;Arnol′d, V. I.;Dokl. Akad. Nauk SSSR,1964

3. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian;Arnol′d, V. I.;Uspehi Mat. Nauk,1963

4. Encyclopaedia of Mathematical Sciences,1993

5. The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states;Aubry, S.;Phys. D,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3