Bilinear decompositions and commutators of singular integral operators

Author:

Ky Luong

Abstract

Let b b be a B M O BMO -function. It is well known that the linear commutator [ b , T ] [b, T] of a Calderón-Zygmund operator T T does not, in general, map continuously H 1 ( R n ) H^1(\mathbb R^n) into L 1 ( R n ) L^1(\mathbb R^n) . However, Pérez showed that if H 1 ( R n ) H^1(\mathbb R^n) is replaced by a suitable atomic subspace H b 1 ( R n ) \mathcal H^1_b(\mathbb R^n) , then the commutator is continuous from H b 1 ( R n ) \mathcal H^1_b(\mathbb R^n) into L 1 ( R n ) L^1(\mathbb R^n) . In this paper, we find the largest subspace H b 1 ( R n ) H^1_b(\mathbb R^n) such that all commutators of Calderón-Zygmund operators are continuous from H b 1 ( R n ) H^1_b(\mathbb R^n) into L 1 ( R n ) L^1(\mathbb R^n) . Some equivalent characterizations of H b 1 ( R n ) H^1_b(\mathbb R^n) are also given. We also study the commutators [ b , T ] [b,T] for T T in a class K \mathcal K of sublinear operators containing almost all important operators in harmonic analysis. When T T is linear, we prove that there exists a bilinear operator R = R T \mathfrak R= \mathfrak R_T mapping continuously H 1 ( R n ) × B M O ( R n ) H^1(\mathbb R^n)\times BMO(\mathbb R^n) into L 1 ( R n ) L^1(\mathbb R^n) such that for all ( f , b ) H 1 ( R n ) × B M O ( R n ) (f,b)\in H^1(\mathbb R^n)\times BMO(\mathbb R^n) we have [ b , T ] ( f ) = R ( f , b ) + T ( S ( f , b ) ) , \begin{equation}[b,T](f)= \mathfrak R(f,b) + T(\mathfrak S(f,b)), \end{equation} where S \mathfrak S is a bounded bilinear operator from H 1 ( R n ) × B M O ( R n ) H^1(\mathbb R^n)\times BMO(\mathbb R^n) into L 1 ( R n ) L^1(\mathbb R^n) which does not depend on T T . In the particular case of T T a Calderón-Zygmund operator satisfying T 1 = T 1 = 0 T1=T^*1=0 and b b in B M O log ( R n ) BMO^\textrm {log}(\mathbb R^n) , the generalized B M O BMO type space that has been introduced by Nakai and Yabuta to characterize multipliers of B M O ( R n ) BMO(\mathbb {R}^n) , we prove that the commutator [ b , T ] [b,T] maps continuously H b 1 ( R n ) H^1_b(\mathbb R^n) into h 1 ( R n ) h^1(\mathbb R^n) . Also, if b b is in B M O ( R n ) BMO(\mathbb R^n) and T 1 = T b = 0 T^*1 = T^*b = 0 , then the commutator [ b , T ] [b, T] maps continuously H b 1 ( R n ) H^1_b (\mathbb R^n) into H 1 ( R n ) H^1(\mathbb R^n) . When T T is sublinear, we prove that there exists a bounded subbilinear operator R = R T : H 1 ( R n ) × B M O ( R n ) L 1 ( R n ) \mathfrak R= \mathfrak R_T: H^1(\mathbb R^n)\times BMO(\mathbb R^n)\to L^1(\mathbb R^n) such that for all ( f , b ) H 1 ( R n ) × B M O ( R n ) (f,b)\in H^1(\mathbb R^n)\times BMO(\mathbb R^n) we have | T ( S ( f , b ) ) | R ( f , b ) | [ b , T ] ( f ) | R ( f , b ) + | T ( S ( f , b ) ) | . \begin{equation}|T(\mathfrak S(f,b))|- \mathfrak R(f,b)\leq |[b,T](f)|\leq \mathfrak R(f,b) + |T(\mathfrak S(f,b))|. \end{equation}

The bilinear decomposition (1) and the subbilinear decomposition (2) allow us to give a general overview of all known weak and strong L 1 L^1 -estimates.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. Weighted estimates for commutators of linear operators;Álvarez, Josefina;Studia Math.,1993

2. Estimates for the kernel and continuity properties of pseudo-differential operators;Álvarez, Josefina;Ark. Mat.,1990

3. Endpoint for the DIV-CURL lemma in Hardy spaces;Bonami, Aline;Publ. Mat.,2010

4. A. Bonami, S. Grellier and L. D. Ky, Paraproducts and products of functions in 𝐵𝑀𝑂(ℝⁿ) and ℍ¹(ℝⁿ) through wavelets, to appear in J. Math. Pure Appl., arXiv: 1103.1822.

5. Remarques sur certains sous-espaces de 𝐵𝑀𝑂(ℝⁿ) et de 𝕓𝕞𝕠(ℝⁿ);Bourdaud, Gérard;Ann. Inst. Fourier (Grenoble),2002

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3