ℎ¹ boundedness of localized operators and commutators with bmo and lmo

Author:

Dafni Galia,Lau Chun

Abstract

We first consider two types of localizations of singular integral operators of convolution type, and show, under mild decay and smoothness conditions on the auxiliary functions, that their boundedness on the local Hardy space h 1 ( R n ) h^1(\mathbb {R}^n) is equivalent. We then study the boundedness on h 1 ( R n ) h^1(\mathbb {R}^n) of the commutator [ b , T ] [b,T] of an inhomogeneous singular integral operator with b b in bmo ( R n ) \operatorname {bmo}(\mathbb {R}^n) , the nonhomogeneous space of functions of bounded mean oscillation. We define local analogues of the atomic space H b 1 ( R n ) H^1_b(\mathbb {R}^n) introduced by Pérez in the case of the homogeneous Hardy space and BMO \operatorname {BMO} , including a variation involving atoms with approximate cancellation conditions. For such an atom a a , we prove integrability of the associated commutator maximal function and of [ b , T ] ( a ) [b,T](a) . For b b in lmo ( R n ) \operatorname {lmo}(\mathbb {R}^n) , this gives h 1 h^1 to L 1 L^1 boundedness of [ b , T ] [b,T] . Finally, under additional approximate cancellation conditions on T T , we show boundedness from h 1 h^1 to h 1 h^1 .

Publisher

American Mathematical Society

Reference49 articles.

1. A note on maximal commutators and commutators of maximal functions;Agcayazi, Mujdat;J. Math. Soc. Japan,2015

2. Commutators for the maximal and sharp functions;Bastero, Jesús;Proc. Amer. Math. Soc.,2000

3. On the inviscid limit of the 2D Navier-Stokes equations with vorticity belonging to BMO-type spaces;Bernicot, Frédéric;Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire,2016

4. On the global well-posedness for Euler equations with unbounded vorticity;Bernicot, Frédéric;Dyn. Partial Differ. Equ.,2015

5. Products of functions in Hardy and Lipschitz or BMO spaces;Bonami, Aline,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3