The first two obstructions to the freeness of arrangements

Author:

Yuzvinsky Sergey

Abstract

In his previous paper the author characterized free arrangements by the vanishing of cohomology modules of a certain sheaf of graded modules over a polynomial ring. Thus the homogeneous components of these cohomology modules can be viewed as obstructions to the freeness of an arrangement. In this paper the first two obstructions are studied in detail. In particular the component of degree zero of the first nontrivial cohomology module has a close relation to formal arrangements and to the operation of truncation. This enables us to prove that in dimension greater than two every free arrangement is formal and not a proper truncation of an essential arrangement.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference8 articles.

1. On the homotopy theory of arrangements;Falk, Michael,1987

2. Actualit\'{e}s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1252;Godement, Roger,1958

3. A formula for the characteristic polynomial of an arrangement;Solomon, L.;Adv. in Math.,1987

4. Arrangements of hyperplanes and their freeness. I;Terao, Hiroaki;J. Fac. Sci. Univ. Tokyo Sect. IA Math.,1980

5. Free arrangements of hyperplanes and unitary reflection groups;Terao, Hiroaki;Proc. Japan Acad. Ser. A Math. Sci.,1980

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Formality and Combinatorial Formality for Hyperplane Arrangements;Discrete & Computational Geometry;2023-02-17

2. On Yuzvinsky’s lattice sheaf cohomology for hyperplane arrangements;Mathematische Annalen;2022-10-31

3. A homological characterization for freeness of multi-arrangements;Mathematische Annalen;2022-01-24

4. Logarithmic derivations associated to line arrangements;Journal of Algebra;2021-09

5. A Stable Version of Terao Conjecture;Springer Proceedings in Mathematics & Statistics;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3