On Formality and Combinatorial Formality for Hyperplane Arrangements

Author:

Möller Tilman,Mücksch Paul,Röhrle GerhardORCID

Abstract

AbstractA hyperplane arrangement is called formal provided all linear dependencies among the defining forms of the hyperplanes are generated by ones corresponding to intersections of codimension two. The significance of this notion stems from the fact that complex arrangements with aspherical complements are formal. The aim of this note is twofold. While work of Yuzvinsky shows that formality is not combinatorial, in our first main theorem we prove that the combinatorial property of factoredness of arrangements does entail formality. Our second main theorem shows that formality is hereditary, i.e., is passed to restrictions. This is rather counter-intuitive, as in contrast the known sufficient conditions for formality, i.e., asphericity, freeness and factoredness (owed to our first theorem), are not hereditary themselves. We also demonstrate that the stronger property of k-formality, due to Brandt and Terao, is not hereditary.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flag-accurate arrangements;Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial;2024-07-25

2. Vertex-weighted digraphs and freeness of arrangements between Shi and Ish;European Journal of Combinatorics;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3