Characterizations of the solvable radical
Author:
Abstract
We prove that there exists a constant k k with the property: if C \mathcal {C} is a conjugacy class of a finite group G G such that every k k elements of C \mathcal {C} generate a solvable subgroup, then C \mathcal {C} generates a solvable subgroup. In particular, using the Classification of Finite Simple Groups, we show that we can take k = 4 k=4 . We also present proofs that do not use the Classification Theorem. The most direct proof gives a value of k = 10 k=10 . By lengthening one of our arguments slightly, we obtain a value of k = 7 k=7 .
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,General Mathematics
Link
http://www.ams.org/proc/2010-138-04/S0002-9939-09-10066-7/S0002-9939-09-10066-7.pdf
Reference17 articles.
1. Cambridge Studies in Advanced Mathematics;Aschbacher, M.,2000
2. On the Fitting height of a soluble group that is generated by a conjugacy class of 3-elements;Al-Roqi, Abdullah;Bull. Lond. Math. Soc.,2007
3. Some applications of the first cohomology group;Aschbacher, M.;J. Algebra,1984
4. On the Fitting height of a soluble group that is generated by a conjugacy class;Flavell, Paul;J. London Math. Soc. (2),2002
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Characterization of the solvable radical by Sylow multiplicities;Journal of Algebra;2023-12
2. On generations by conjugate elements in almost simple groups with socle 24(2)′;Journal of Group Theory;2023-07-29
3. The Baer–Suzuki Theorem for Groups of 3-Exponent 1;Algebra and Logic;2023-07
4. On the sharp Baer-Suzuki theorem for the $\pi$-radical of a finite group;Sbornik: Mathematics;2023
5. О точной теореме Бэра-Сузуки для $\pi$-радикала конечной группы;Математический сборник;2022-12-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3