On generations by conjugate elements in almost simple groups with socle 2𝐹4(𝑞2)′

Author:

Revin Danila O.1ORCID,Zavarnitsine Andrei V.1ORCID

Affiliation:

1. Sobolev Institute of Mathematics , 4, Koptyug av., 630090 , Novosibirsk , Russia

Abstract

Abstract We prove that if L = F 4 2 ( 2 2 n + 1 ) L={}^{2}F_{4}(2^{2n+1})^{\prime} and 𝑥 is a nonidentity automorphism of 𝐿, then G = L , x G=\langle L,x\rangle has four elements conjugate to 𝑥 that generate 𝐺. This result is used to study the following conjecture about the 𝜋-radical of a finite group. Let 𝜋 be a proper subset of the set of all primes and let 𝑟 be the least prime not belonging to 𝜋. Set m = r m=r if r = 2 r=2 or 3 and m = r 1 m=r-1 if r 5 r\geqslant 5 . Supposedly, an element 𝑥 of a finite group 𝐺 is contained in the 𝜋-radical O π ( G ) \operatorname{O}_{\pi}(G) if and only if every 𝑚 conjugates of 𝑥 generate a 𝜋-subgroup. Based on the results of this and previous papers, the conjecture is confirmed for all finite groups whose every nonabelian composition factor is isomorphic to a sporadic, alternating, linear, unitary simple group, or to one of the groups of type B 2 2 ( 2 2 n + 1 ) {}^{2}B_{2}(2^{2n+1}) , G 2 2 ( 3 2 n + 1 ) {}^{2}G_{2}(3^{2n+1}) , F 4 2 ( 2 2 n + 1 ) {}^{2}F_{4}(2^{2n+1})^{\prime} , G 2 ( q ) G_{2}(q) , or D 4 3 ( q ) {}^{3}D_{4}(q) .

Funder

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference43 articles.

1. M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1–91.

2. A. S. Bang, Taltheoretiske undersøgelser, Tidsskrift Math. 4 (1886), 70–80.

3. J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser. 407, Cambridge University, Cambridge, 2013.

4. R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math. 28, John Wiley & Sons, London, 1972.

5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, A ⁢ T ⁢ L ⁢ A ⁢ S \mathbb{ATLAS} of finite groups, Oxford University, Eynsham, 1985.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3