Algebras of iterated path integrals and fundamental groups

Author:

Chen Kuo-tsai

Abstract

A method of iterated integration along paths is used to extend deRham cohomology theory to a homotopy theory on the fundamental group level. For every connected C {C^\infty } manifold M \mathfrak {M} with a base point p, we construct an algebra π 1 = π 1 ( M , p ) {\pi ^1} = {\pi ^1}(\mathfrak {M},p) consisting of iterated integrals, whose value along each loop at p depends only on the homotopy class of the loop. Thus π 1 {\pi ^1} can be taken as a commutative algebra of functions on the fundamental group π 1 ( M ) {\pi _1}(\mathfrak {M}) , whose multiplication induces a comultiplication π 1 π 1 π 1 {\pi ^1} \to {\pi ^1} \otimes {\pi ^1} , which makes π 1 {\pi ^1} a Hopf algebra. The algebra π 1 {\pi ^1} relates the fundamental group to analysis of the manifold, and we obtain some analytical conditions which are sufficient to make the fundamental group nonabelian or nonsolvable. We also show that π 1 {\pi ^1} depends essentially only on the differentiable homotopy type of the manifold. The second half of the paper is devoted to the study of structures of algebras of iterated path integrals. We prove that such algebras can be constructed algebraically from the following data: (a) the commutative algebra A of C {C^\infty } functions on M \mathfrak {M} ; (b) the A-module M of C {C^\infty } 1-forms on M \mathfrak {M} ; (c) the usual differentiation d : A M d:A \to M ; and (d) the evaluation map at the base point p, ε : A K \varepsilon :A \to K , K being the real (or complex) number field.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference19 articles.

1. Iterated integrals and exponential homomorphisms;Chen, Kuo-Tsai;Proc. London Math. Soc. (3),1954

2. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula;Chen, Kuo-Tsai;Ann. of Math. (2),1957

3. Integration of paths—a faithful representation of paths by non-commutative formal power series;Chen, Kuo-Tsai;Trans. Amer. Math. Soc.,1958

4. Exponential isomorphism for vector spaces and its connection with Lie groups;Chen, Kuo-Tsai;J. London Math. Soc.,1958

5. Formal differential equations;Chen, Kuo-tsai;Ann. of Math. (2),1961

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3