On the monodromy of holomorphic differential systems

Author:

Biswas Indranil1ORCID,Dumitrescu Sorin2ORCID,Heller Lynn3ORCID,Heller Sebastian3ORCID,dos Santos João Pedro4

Affiliation:

1. Department of Mathematics, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India

2. Université Côte d’Azur, CNRS, LJAD, France

3. Beijing Institute of Mathematical Sciences and Applications, Yanqi Island, Huairou District, Beijing 101408, P. R. China

4. Institut Montpéllierain Alexander Grothendieck, Université de Montpellier, Place Eugène Bataillon, 34090 Montpellier, France

Abstract

First we survey and explain the strategy of some recent results that construct holomorphic [Formula: see text]-differential systems over some Riemann surfaces [Formula: see text] of genus [Formula: see text], satisfying the condition that the image of the associated monodromy homomorphism is (real) Fuchsian [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, Fuchsian sl[Formula: see text]-systems of compact Riemann surfaces [with an appendix by Takuro Mochizuki], preprint, arXiv:org/abs/2104.04818] or some cocompact Kleinian subgroup [Formula: see text] as in [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of [Formula: see text], preprint, arXiv:org/abs/2112.03131]. As a consequence, there exist holomorphic maps from [Formula: see text] to the quotient space [Formula: see text], where [Formula: see text] is a cocompact lattice, that do not factor through any elliptic curve [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of [Formula: see text], preprint, arXiv:org/abs/2112.03131]. This answers positively a question of Ghys in [E. Ghys, Déformations des structures complexes sur les espaces homogènes de [Formula: see text], J. Reine Angew. Math. 468 (1995) 113–138]; the question was also raised by Huckleberry and Winkelmann in [A. H. Huckleberry and J. Winkelmann, Subvarieties of parallelizable manifolds, Math. Ann. 295 (1993) 469–483]. Then we prove that when [Formula: see text] is a Riemann surface, a Torelli-type theorem holds for the affine group scheme over [Formula: see text] obtained from the category of holomorphic connections on étale trivial holomorphic bundles. After that, we explain how to compute in a simple way the holonomy of a holomorphic connection on a free vector bundle. Finally, for a compact Kähler manifold [Formula: see text], we investigate the neutral Tannakian category given by the holomorphic connections on étale trivial holomorphic bundles over [Formula: see text]. If [Formula: see text] (respectively, [Formula: see text]) stands for the affine group scheme over [Formula: see text] obtained from the category of connections (respectively, connections on free (trivial) vector bundles), then the natural inclusion produces a morphism [Formula: see text] of Hopf algebras. We present a description of the transpose of [Formula: see text] in terms of the iterated integrals.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3