A fractal version of the Onsager’s conjecture: The 𝛽-model

Author:

De Rosa Luigi,Haffter Silja

Abstract

Intermittency phenomena are known to be among the main reasons why Kolmogorov’s theory of fully developed Turbulence is not in accordance with several experimental results. This is why some fractal statistical models have been proposed in order to realign the theoretical physical predictions with the empirical experiments. They indicate that energy dissipation, and thus singularities, is not space filling for high Reynolds numbers. This note aims to give a precise mathematical statement on the energy conservation of such fractal models of Turbulence. We prove that for θ \theta - Hölder continuous weak solutions of the incompressible Euler equations energy conservation holds if the upper Minkowski dimension of the spatial singular set S T 3 S \subseteq \mathbb {T}^3 (possibly also time-dependent) is small, or more precisely if dim ¯ M ( S ) > 2 + 3 θ \overline {\operatorname {dim}}_{\mathcal {M}}(S)>2+3\theta . In particular, the spatial singularities of non-conservative θ \theta - Hölder continuous weak solutions of Euler are concentrated on a set with dimension lower bound 2 + 3 θ 2+3\theta . This result can be viewed as the fractal counterpart of the celebrated Onsager conjecture and it matches both with the prediction given by the β \beta - model introduced by Frisch, Sulem and Nelkin [J. Fluid Mech. 87 (1978), pp. 719–736] and with other mathematical results in the endpoint cases.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. Cambridge Nonlinear Science Series;Bohr, Tomas,1998

2. Anomalous dissipation for 1/5-Hölder Euler flows;Buckmaster, Tristan;Ann. of Math. (2),2015

3. Dissipative Euler flows with Onsager-critical spatial regularity;Buckmaster, Tristan;Comm. Pure Appl. Math.,2016

4. Onsager’s conjecture for admissible weak solutions;Buckmaster, Tristan;Comm. Pure Appl. Math.,2019

5. Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1;Buckmaster, Tristan,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Support of Anomalous Dissipation Measures;Journal of Mathematical Fluid Mechanics;2024-08-22

2. On the endpoint regularity in Onsager’s conjecture;Analysis & PDE;2024-07-19

3. Intermittency and Lower Dimensional Dissipation in Incompressible Fluids;Archive for Rational Mechanics and Analysis;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3