On the Support of Anomalous Dissipation Measures

Author:

De Rosa LuigiORCID,Drivas Theodore D.,Inversi Marco

Abstract

AbstractBy means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018. https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023. https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023. https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022. https://doi.org/10.1007/s00205-021-01736-2). For $$L^q_tL^r_x$$ L t q L x r suitable Leray–Hopf solutions of the $$d-$$ d - dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure $$\mathcal {P}^{s}$$ P s , which gives $$s=d-2$$ s = d - 2 as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.

Funder

University of Basel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3