The valence of harmonic polynomials viewed through the probabilistic lens

Author:

Lundberg Erik

Abstract

We prove the existence of complex polynomials p ( z ) p(z) of degree n n and q ( z ) q(z) of degree m > n m>n such that the harmonic polynomial p ( z ) + q ( z ) ¯ p(z) + \overline {q(z)} has at least n m \lceil n \sqrt {m} \rceil many zeros. This provides an array of new counterexamples to Wilmshurst’s conjecture that the maximum valence of harmonic polynomials p ( z ) + q ( z ) ¯ p(z)+\overline {q(z)} taken over polynomials p p of degree n n and q q of degree m m is m ( m 1 ) + 3 n 2 m(m-1)+3n-2 . More broadly, these examples show that there does not exist a linear (in n n ) bound on the valence with a uniform (in m m ) growth rate. The proof of this result uses a probabilistic technique based on estimating the average number of zeros of a certain family of random harmonic polynomials.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. Wiley Series in Discrete Mathematics and Optimization;Alon, Noga,2016

2. Probability and its Applications (New York);Bass, Richard F.,1995

3. Green’s function and anti-holomorphic dynamics on a torus;Bergweiler, Walter;Proc. Amer. Math. Soc.,2016

4. On the number of solutions of some transcendental equations;Bergweiler, Walter;Anal. Math. Phys.,2018

5. Counting zeros of harmonic rational functions and its application to gravitational lensing;Bleher, Pavel M.;Int. Math. Res. Not. IMRN,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the zeros of polyanalytic polynomials;Journal of Mathematical Analysis and Applications;2024-12

2. Egerváry's theorems for harmonic trinomials;Acta Mathematica Hungarica;2024-02

3. On the valence of logharmonic polynomials;Contemporary Mathematics;2024

4. Zeros of Convex Combinations of Elementary Families of Harmonic Functions;Mathematics;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3