Zeros of Convex Combinations of Elementary Families of Harmonic Functions

Author:

Brooks Jennifer1,Dixon Megan1ORCID,Dorff Michael1,Lee Alexander1,Ottinger Rebekah1

Affiliation:

1. Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

Abstract

Brilleslyper et al. investigated how the number of zeros of a one-parameter family of harmonic trinomials varies with a real parameter. Brooks and Lee obtained a similar theorem for an analogous family of harmonic trinomials with poles. In this paper, we investigate the number of zeros of convex combinations of members of these families and show that it is possible for a convex combination of two members of a family to have more zeros than either of its constituent parts. Our main tool to prove these results is the harmonic analog of Rouché’s theorem.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference17 articles.

1. Sheil-Small, T. (1992, January 16–22). Tagesbericht, Mathematisches Forsch. Proceedings of the Funktionentheorie, Oberwolfach, Germany.

2. The exact bound on the number of zeros of harmonic polynomials;Bshouty;J. Anal. Math.,1995

3. Peretz, R., and Schmid, J. (1997). Proceedings of the Ashkelon Workshop on Complex Function Theory, Bar-Ilan University.

4. The valence of harmonic polynomials;Wilmshurst;Proc. Am. Math. Soc.,1998

5. On the maximal number of zeros of certain harmonic polynomials;Khavinson;Proc. Am. Math. Soc.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3