Definable combinatorics at the first uncountable cardinal

Author:

Chan William,Jackson Stephen

Abstract

We work throughout in the theory Z F \mathsf {ZF} with the axiom of determinacy, A D \mathsf {AD} . We introduce and prove some club uniformization principles under A D \mathsf {AD} and A D R \mathsf {AD}_\mathbb {R} . Using these principles, we establish continuity results for functions of the form Φ : [ ω 1 ] ω 1 ω 1 \Phi \colon [{\omega _{1}}]^{\omega _{1}} \rightarrow {\omega _{1}} and Ψ : [ ω 1 ] ω 1 ω 1 ω 1 \Psi \colon [{\omega _{1}}]^{\omega _{1}} \rightarrow {}^{\omega _{1}}{\omega _{1}} . Specifically, for every function Φ : [ ω 1 ] ω 1 ω 1 \Phi \colon [\omega _1]^{\omega _1} \rightarrow \omega _1 , there is a club C ω 1 C \subseteq \omega _1 so that Φ [ C ] ω 1 \Phi \upharpoonright [C]^{\omega _1}_* is a continuous function. This has several consequences such as establishing the cardinal relation | [ ω 1 ] > ω 1 | > | [ ω 1 ] ω 1 | |[{\omega _{1}}]^{>{\omega _{1}}}| > |[{\omega _{1}}]^{\omega _{1}}| and answering a question of Zapletal by showing that if X α : α > ω 1 \langle X_\alpha : \alpha > \omega _1\rangle is a collection of subsets of [ ω 1 ] ω 1 [\omega _1]^{\omega _1} with the property that α > ω 1 X α = [ ω 1 ] ω 1 \bigcup _{\alpha > \omega _1}X_\alpha = [\omega _1]^{\omega _1} , then there is an α > ω 1 \alpha > \omega _1 so that X α X_\alpha and [ ω 1 ] ω 1 [\omega _1]^{\omega _1} are in bijection.

We show that under A D R \mathsf {AD}_\mathbb {R} everywhere [ ω 1 ] > ω 1 [\omega _1]^{>\omega _1} -club uniformization holds which is the following statement: Let c l u b ω 1 \mathsf {club}_{\omega _1} denote the collection of club subsets of ω 1 \omega _1 . Suppose R [ ω 1 ] > ω 1 × c l u b ω 1 R \subseteq [\omega _1]^{>\omega _1} \times \mathsf {club}_{\omega _1} is \subseteq -downward closed in the sense that for all σ [ ω 1 ] > ω 1 \sigma \in [\omega _1]^{>\omega _1} , for all clubs C D C \subseteq D , R ( σ , D ) R(\sigma ,D) implies R ( σ , C ) R(\sigma ,C) . Then there is a function F : d o m ( R ) c l u b ω 1 F \colon {\mathrm {dom}}(R) \rightarrow \mathsf {club}_{\omega _1} so that for all σ d o m ( R ) \sigma \in {\mathrm {dom}}(R) , R ( σ , F ( σ ) ) R(\sigma ,F(\sigma )) .

We show that under A D \mathsf {AD} almost everywhere [ ω 1 ] > ω 1 [{\omega _{1}}]^{>{\omega _{1}}} -club uniformization holds which is the statement that for every R [ ω 1 ] > ω 1 × c l u b ω 1 R \subseteq [{\omega _{1}}]^{>{\omega _{1}}} \times \mathsf {club}_{\omega _{1}} which is \subseteq -downward closed, there is a club C C and a function F : d o m ( R ) [ C ] > ω 1 c l u b ω 1 F \colon {\mathrm {dom}}(R) \cap [C]^{>{\omega _{1}}}_* \rightarrow \mathrm {club}_{\omega _{1}} so that for all σ d o m ( R ) [ C ] > ω 1 \sigma \in {\mathrm {dom}}(R) \cap [C]^{>{\omega _{1}}}_* , R ( σ , F ( σ ) ) R(\sigma ,F(\sigma )) .

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

1. A trichotomy theorem in natural models of 𝖠𝖣⁺;Caicedo, Andrés Eduardo,2011

2. Ordinal definability and combinatorics of equivalence relations;Chan, William;J. Math. Log.,2019

3. An introduction to combinatorics of determinacy;Chan, William,[2020] \copyright2020

4. William Chan and Stephen Jackson, Cardinality of Wellordered Disjoint Unions of Quotients of Smooth Equivalence Relations, arXiv e-prints (2019), arXiv:1903.03902.

5. William Chan, Stephen Jackson, and Nam Trang, More definable combinatorics around the first and second uncountable cardinal, In preparation.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3