Almost Everywhere Behavior of Functions According to Partition Measures

Author:

Chan William,Jackson Stephen,Trang Nam

Abstract

Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses. If $\kappa $ is a cardinal, $\epsilon < \kappa $ , ${\mathrm {cof}}(\epsilon ) = \omega $ , $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and a $\delta < \epsilon $ so that for all $f,g \in [C]^\epsilon _*$ , if $f \upharpoonright \delta = g \upharpoonright \delta $ and $\sup (f) = \sup (g)$ , then $\Phi (f) = \Phi (g)$ . If $\kappa $ is a cardinal, $\epsilon $ is countable, $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ holds and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the strong almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and finitely many ordinals $\delta _0, ..., \delta _k \leq \epsilon $ so that for all $f,g \in [C]^\epsilon _*$ , if for all $0 \leq i \leq k$ , $\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$ , then $\Phi (f) = \Phi (g)$ . If $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\kappa _2$ , $\epsilon \leq \kappa $ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the almost everywhere monotonicity property: There is a club $C \subseteq \kappa $ so that for all $f,g \in [C]^\epsilon _*$ , if for all $\alpha < \epsilon $ , $f(\alpha ) \leq g(\alpha )$ , then $\Phi (f) \leq \Phi (g)$ . Suppose dependent choice ( $\mathsf {DC}$ ), ${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$ and the almost everywhere short length club uniformization principle for ${\omega _1}$ hold. Then every function $\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$ satisfies a finite continuity property with respect to closure points: Let $\mathfrak {C}_f$ be the club of $\alpha < {\omega _1}$ so that $\sup (f \upharpoonright \alpha ) = \alpha $ . There is a club $C \subseteq {\omega _1}$ and finitely many functions $\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$ so that for all $f \in [C]^{\omega _1}_*$ , for all $g \in [C]^{\omega _1}_*$ , if $\mathfrak {C}_g = \mathfrak {C}_f$ and for all $i < n$ , $\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$ , then $\Phi (g) = \Phi (f)$ . Suppose $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\epsilon _2$ for all $\epsilon < \kappa $ . For all $\chi < \kappa $ , $[\kappa ]^{<\kappa }$ does not inject into ${}^\chi \mathrm {ON}$ , the class of $\chi $ -length sequences of ordinals, and therefore, $|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$ . As a consequence, under the axiom of determinacy $(\mathsf {AD})$ , these two cardinality results hold when $\kappa $ is one of the following weak or strong partition cardinals of determinacy: ${\omega _1}$ , $\omega _2$ , $\boldsymbol {\delta }_n^1$ (for all $1 \leq n < \omega $ ) and $\boldsymbol {\delta }^2_1$ (assuming in addition $\mathsf {DC}_{\mathbb {R}}$ ).

Publisher

Cambridge University Press (CUP)

Reference18 articles.

1. The size of the class of countable sequences of ordinals;Chan;Trans. Amer. Math. Soc.,2022

2. [2] Chan, W. , Definable combinatorics of strong partition cardinals, In preparation.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3