Development of singularities in the relativistic Euler equations

Author:

Athanasiou Nikolaos,Bayles-Rea Tianrui,Zhu Shengguo

Abstract

The purpose of this paper is to study the phenomenon of singularity formation in large data problems for C 1 C^1 solutions to the Cauchy problem of the relativistic Euler equations. The classical theory established by [P. D. Lax [J. Math. Phys. 5 (1964), pp. 611–613] shows that, for 2 × 2 2\times 2 hyperbolic systems, the break-down of C 1 C^1 solutions occurs in finite time if initial data contain any compression in some truly non-linear characteristic field under some additional conditions, which include genuine non-linearity and the strict positivity of the difference between two corresponding eigenvalues. These harsh structural assumptions mean that it is highly non-trivial to apply this theory to archetypal systems of conservation laws, such as the (1+1)-dimensional relativistic Euler equations. Actually, in the (1+1)-dimensional spacetime setting, if the mass-energy density ρ \rho does not vanish initially at any finite point, the essential difficulty in considering the possible break-down is coming up with a way to obtain sharp enough control on the lower bound of ρ \rho . To this end, based on introducing several key artificial quantities and some elaborate analysis on the difference of the two Riemann invariants, we characterized the decay of mass-energy density lower bound in time, and ultimately made some concrete progress. On the one hand, for the C 1 C^1 solutions with large data and possible far field vacuum to the isentropic flow, we verified the theory obtained by P. D. Lax in 1964. On the other hand, for the C 1 C^1 solutions with large data and strictly positive initial mass-energy density to the non-isentropic flow, we exhibit a numerical value N N , thought of as representing the strength of an initial compression, above which all initial data lead to a finite-time singularity formation. These singularities manifest as a blow-up in the gradient of certain Riemann invariants associated with corresponding systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3