The relativistic Euler equations: ESI notes on their geo-analytic structures and implications for shocks in 1D and multi-dimensions

Author:

Abbrescia LeonardoORCID,Speck JaredORCID

Abstract

Abstract In this article, we provide notes that complement the lectures on the relativistic Euler equations and shocks that were given by the second author at the program Mathematical Perspectives of Gravitation Beyond the Vacuum Regime, which was hosted by the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna in February 2022. We set the stage by introducing a standard first-order formulation of the relativistic Euler equations and providing a brief overview of local well-posedness in Sobolev spaces. Then, using Riemann invariants, we provide the first detailed construction of a localized subset of the maximal globally hyperbolic developments of an open set of initially smooth, shock-forming isentropic solutions in 1D, with a focus on describing the singular boundary and the Cauchy horizon that emerges from the singularity. Next, we provide an overview of the new second-order formulation of the 3D relativistic Euler equations derived in Disconzi and Speck (2019 Ann. Henri Poincare 20 2173–270), its rich geometric and analytic structures, their implications for the mathematical theory of shock waves, and their connection to the setup we use in our 1D analysis of shocks. We then highlight some key prior results on the study of shock formation and related problems. Furthermore, we provide an overview of how the formulation of the flow derived in Disconzi and Speck (2019 Ann. Henri Poincare 20 2173–270) can be used to study shock formation in multiple spatial dimensions. Finally, we discuss various open problems tied to shocks.

Funder

Division of Mathematical Sciences

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference106 articles.

1. The emergence of the singular boundary from the crease in 3D compressible Euler flow;Abbrescia,2022

2. The emergence of the Cauchy horizon from the crease in 3D compressible Euler flow;Abbrescia

3. Remarkable localized integral identities for 3D compressible Euler flow and the double-null framework;Abbrescia,2020

4. Global nearly-plane-symmetric solutions to the membrane equation;Abbrescia;Forum Math. Pi,2020

5. Geometric analysis of 1 + 1 dimensional quasilinear wave equations;Abbrescia,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3