Lévy-Khintchine random matrices and the Poisson weighted infinite skeleton tree

Author:

Jung Paul

Abstract

We study a class of Hermitian random matrices which includes Wigner matrices, heavy-tailed random matrices, and sparse random matrices such as adjacency matrices of Erdős-Rényi random graphs with p n 1 n p_n\sim \frac 1 n . Our n × n n\times n random matrices have real entries which are i.i.d. up to symmetry. The distribution of entries depends on n n , and we require row sums to converge in distribution. It is then well-known that the limit distribution must be infinitely divisible.

We show that a limiting empirical spectral distribution (LSD) exists and, via local weak convergence of associated graphs, that the LSD corresponds to the spectral measure associated to the root of a graph which is formed by connecting infinitely many Poisson weighted infinite trees using a backbone structure of special edges called “cords to infinity”. One example covered by the results are matrices with i.i.d. entries having infinite second moments but normalized to be in the Gaussian domain of attraction. In this case, the limiting graph is N \mathbb {N} rooted at 1 1 , so the LSD is the semicircle law.

Funder

National Security Agency

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference41 articles.

1. Cambridge Studies in Advanced Mathematics;Anderson, Greg W.,2010

2. Asymptotics in the random assignment problem;Aldous, David;Probab. Theory Related Fields,1992

3. The 𝜁(2) limit in the random assignment problem;Aldous, David J.;Random Structures Algorithms,2001

4. Decompositions of the free product of graphs;Accardi, Luigi;Infin. Dimens. Anal. Quantum Probab. Relat. Top.,2007

5. The objective method: probabilistic combinatorial optimization and local weak convergence;Aldous, David,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase transition for the smallest eigenvalue of covariance matrices;Probability Theory and Related Fields;2024-07-13

2. Spectrum of Lévy–Khintchine Random Laplacian Matrices;Journal of Theoretical Probability;2023-07-26

3. Necessary and sufficient conditions for convergence to the semicircle distribution;Random Matrices: Theory and Applications;2022-07-14

4. Spectrum of heavy-tailed elliptic random matrices;Electronic Journal of Probability;2022-01-01

5. Extreme eigenvalue statistics of m-dependent heavy-tailed matrices;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3