The Harer-Zagier and Jackson formulas and new results for one-face bipartite maps

Author:

Chen Ricky

Abstract

The study of bipartite maps (or Grothendieck’s dessins d’enfants) is closely connected with geometry, mathematical physics and free probability. Here we study these objects from their permutation factorization formulation using a novel character theory approach. We first present some general symmetric function expressions for the number of products of two permutations respectively from two arbitrary, but fixed, conjugacy classes indexed by α \alpha and γ \gamma that produce a permutation with m m cycles. Our next objective is to derive explicit formulas for the cases where α \alpha corresponds to full cycles, i.e., one-face bipartite maps. We prove a far-reaching explicit formula, and show that the number for any γ \gamma can be iteratively reduced to that of products of two full cycles, which implies an efficient dimension-reduction algorithm for building a database of all these numbers. Note that the number for products of two full cycles can be computed by the Zagier-Stanley formula. Also, in a unified way, we easily prove the celebrated Harer-Zagier formula and Jackson’s formula, and we may obtain explicit formulas for several new families as well.

Publisher

American Mathematical Society (AMS)

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Harer-Zagier and Jackson formulas and new results for one-face bipartite maps;Proceedings of the American Mathematical Society;2024-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3