The module structure of a group action on a polynomial ring: A finiteness theorem

Author:

Karagueuzian Dikran,Symonds Peter

Abstract

Consider a group acting on a polynomial ring over a finite field. We study the polynomial ring as a module for the group and prove a structure theorem with several striking corollaries. For example, any indecomposable module that appears as a summand must also appear in low degree, and so the number of isomorphism types of such summands is finite. There are also applications to invariant theory, giving a priori bounds on the degrees of the generators.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Decomposition of exterior and symmetric powers of indecomposable 𝑍/𝑝𝑍-modules in characteristic 𝑝 and relations to invariants;Almkvist, Gert,1978

2. Periodicity of Weyl modules for 𝑆𝐿(2,𝑞);Alperin, J.;J. Algebra,1982

3. BC Bleher, F.M. and Chinburg, T., Galois structure of homogeneous coordinate rings, Trans. Amer. Math. Soc. (to appear).

4. The Magma algebra system. I. The user language;Bosma, Wieb;J. Symbolic Comput.,1997

5. Symmetric powers of representations of finite groups;Bryant, Roger M.;J. Algebra,1993

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The module structure of a group action on a ring;Selecta Mathematica;2024-08-29

2. Invariants of GLn(q) in polynomials modulo Frobenius powers;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2017-07-05

3. Classification of the Linearly Reductive Finite Subgroup Schemes of S L 2;Acta Mathematica Vietnamica;2015-07-24

4. Invariant Theory of Finite Groups;Encyclopaedia of Mathematical Sciences;2015

5. The second main theorem vector for the modular regular representation ofC2;Advances in Mathematics;2014-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3