Abstract
AbstractConsider a finite group G acting on a graded Noetherian k-algebra S, for some field k of characteristic p; for example S might be a polynomial ring. Regard S as a kG-module and consider the multiplicity of a particular indecomposable module as a summand in each degree. We show how this can be described in terms of homological algebra and how it is linked to the geometry of the group action on the spectrum of S.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge (1995)
2. Benson, D.J.: Representations and Cohomology I, Cambridge Studies in Advanced Mathematics 30. Cambridge Univ. Press, Cambridge (1991)
3. Benson, D.J.: Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, 190. Cambridge University Press, Cambridge (1993)
4. Broué, M.: On Scott modules and p-permutation modules: an approach through the Brauer morphism. Proc. Am. Math. Soc. 93, 401–408 (1985)
5. Bruns, W., Herzog, W.: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge (1993)