Stable broken 𝐻(𝑐𝑢𝑟𝑙) polynomial extensions and 𝑝-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem

Author:

Chaumont-Frelet T.,Ern A.,Vohralík M.

Abstract

We study extensions of piecewise polynomial data prescribed in a patch of tetrahedra sharing an edge. We show stability in the sense that the minimizers over piecewise polynomial spaces with prescribed tangential component jumps across faces and prescribed piecewise curl in elements are subordinate in the broken energy norm to the minimizers over the broken H ( curl ) \boldsymbol H(\boldsymbol {\operatorname {curl}}) space with the same prescriptions. Our proofs are constructive and yield constants independent of the polynomial degree. We then detail the application of this result to the a posteriori error analysis of the curl–curl problem discretized with Nédélec finite elements of arbitrary order. The resulting estimators are reliable, locally efficient, polynomial-degree-robust, and inexpensive. They are constructed by a broken patchwise equilibration which, in particular, does not produce a globally H ( curl ) \boldsymbol H(\boldsymbol {\operatorname {curl}}) -conforming flux. The equilibration is only related to edge patches and can be realized without solutions of patch problems by a sweep through tetrahedra around every mesh edge. The error estimates become guaranteed when the regularity pick-up constant is explicitly known. Numerical experiments illustrate the theoretical findings.

Funder

European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference49 articles.

1. Applied Mathematical Sciences;Assous, Franck,2018

2. Residual based a posteriori error estimators for eddy current computation;Beck, Rudi;M2AN Math. Model. Numer. Anal.,2000

3. Localization of the 𝑊^{-1,𝑞} norm for local a posteriori efficiency;Blechta, Jan;IMA J. Numer. Anal.,2020

4. Electromagnetism;Bossavit, Alain,1998

5. Equilibrated residual error estimates are 𝑝-robust;Braess, Dietrich;Comput. Methods Appl. Mech. Engrg.,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3