Three-manifolds with many flat planes

Author:

Bettiol Renato,Schmidt Benjamin

Abstract

We discuss the rigidity (or lack thereof) imposed by different notions of having an abundance of zero curvature planes on a complete Riemannian 3 3 -manifold. We prove a rank rigidity theorem for complete 3 3 -manifolds, showing that having higher rank is equivalent to having reducible universal covering. We also study 3 3 -manifolds such that every tangent vector is contained in a flat plane, including examples with irreducible universal covering, and discuss the effect of finite volume and real-analyticity assumptions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Nonpositively curved manifolds of higher rank;Ballmann, Werner;Ann. of Math. (2),1985

2. Manifolds of nonpositive curvature and their buildings;Burns, Keith;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1987

3. Collapsing Riemannian manifolds while keeping their curvature bounded. I;Cheeger, Jeff;J. Differential Geom.,1986

4. A curvature characterization of certain locally rank-one symmetric spaces;Chi, Quo-Shin;J. Differential Geom.,1988

5. A characterization of homogeneous spaces with positive hyperbolic rank;Connell, Christopher;Geom. Dedicata,2002

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Killing vector fields on Riemannian and Lorentzian 3‐manifolds;Mathematische Nachrichten;2023-03-16

2. Curvature and Killing Vector Fields on Lorentzian 3-Manifolds;Developments in Lorentzian Geometry;2022

3. On the Einstein condition for Lorentzian 3-manifolds;Journal of Mathematical Analysis and Applications;2021-05

4. Maniflods with conullity at most two as graph manifolds;Annales scientifiques de l'École normale supérieure;2020

5. Hyperbolic rank rigidity for manifolds of -pinched negative curvature;Ergodic Theory and Dynamical Systems;2018-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3