Killing vector fields on Riemannian and Lorentzian 3‐manifolds

Author:

Aazami Amir Babak1,Ream Robert1

Affiliation:

1. Department of Mathematics Clark University Worcester Massachusetts USA

Abstract

AbstractWe give a complete local classification of all Riemannian 3‐manifolds admitting a nonvanishing Killing vector field T. We then extend this classification to timelike Killing vector fields on Lorentzian 3‐manifolds, which are automatically nonvanishing. The two key ingredients needed in our classification are the scalar curvature S of g and the function , where Ric is the Ricci tensor; in fact their sum appears as the Gaussian curvature of the quotient metric obtained from the action of T. Our classification generalizes that of Sasakian structures, which is the special case when . We also give necessary, and separately, sufficient conditions, both expressed in terms of , for g to be locally conformally flat. We then move from the local to the global setting, and prove two results: in the event that T has unit length and the coordinates derived in our classification are globally defined on , we give conditions under which S completely determines when the metric will be geodesically complete. In the event that the 3‐manifold M is compact, we give a condition stating when it admits a metric of constant positive sectional curvature.

Publisher

Wiley

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3