A sunflower is a collection of sets whose pairwise intersections are identical. In this article, we shall go sunflower-picking. We find sunflowers in several seemingly unrelated fields, before turning to discuss recent progress on the famous sunflower conjecture of Erdős and Rado, made by Alweiss, Lovett, Wu, and Zhang, as well as a related resolution of the threshold vs expectation threshold conjecture of Kahn and Kalai discovered by Park and Pham. We give short proofs for both of these results.