The Park-Pham Theorem with Optimal Convergence Rate
-
Published:2023-05-19
Issue:2
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Park and Pham's recent proof of the Kahn-Kalai conjecture was a major breakthrough in the field of graph and hypergraph thresholds. Their result gives an upper bound on the threshold at which a probabilistic construction has a $1-\epsilon$ chance of achieving a given monotone property. While their bound in other parameters is optimal up to constant factors for any fixed $\epsilon$, it does not have the optimal dependence on $\epsilon$ as $\epsilon\rightarrow 0$. In this short paper, we prove a version of the Park-Pham Theorem with optimal $\epsilon$-dependence.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Short Proof of Kahn-Kalai Conjecture;The Electronic Journal of Combinatorics;2024-07-12
2. A Simple Proof of the Nonuniform Kahn–Kalai Conjecture;SIAM Journal on Discrete Mathematics;2024-07-04