Betti and Hodge numbers of configuration spaces of a punctured elliptic curve from its zeta functions

Author:

Cheong Gilyoung,Huang Yifeng

Abstract

Given an elliptic curve E E defined over C \mathbb {C} , let E × E^{\times } be an open subset of E E obtained by removing a point. In this paper, we show that the i i -th Betti number of the unordered configuration space C o n f n ( E × ) \mathrm {Conf}^{n}(E^{\times }) of n n points on E × E^{\times } appears as a coefficient of an explicit rational function in two variables. We also compute its Hodge numbers as coefficients of another explicit rational function in four variables. Our result is interesting because these rational functions resemble the generating function of the F q \mathbb {F}_{q} -point counts of C o n f n ( E × ) \mathrm {Conf}^{n}(E^{\times }) , which can be obtained from the zeta function of E E over any fixed finite field F q \mathbb {F}_{q} . We show that the mixed Hodge structure of the i i -th singular cohomology group H i ( C o n f n ( E × ) ) H^{i}(\mathrm {Conf}^{n}(E^{\times })) with complex coefficients is pure of weight w ( i ) w(i) , an explicit integer we provide in this paper. This purity statement implies our main result about the Betti numbers and the Hodge numbers. Our proof uses Totaro’s spectral sequence computation that describes the weight filtration of the mixed Hodge structure on H i ( C o n f n ( E × ) ) H^{i}(\mathrm {Conf}^{n}(E^{\times })) .

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. [Arn1970] V, I. Arnol’d, On some topological invariants of algebraic functions, Transactions of the Moscow Mathematical Society 21 (1970), 30-52.

2. Cohomology of abelian arrangements;Bibby, Christin;Proc. Amer. Math. Soc.,2016

3. Rational cohomology of configuration spaces of surfaces;Bödigheimer, C.-F.,1988

4. Representation stability in cohomology and asymptotics for families of varieties over finite fields;Church, Thomas,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3