Lower bounds for the total stopping time of 3𝑥+1 iterates

Author:

Applegate David,Lagarias Jeffrey

Abstract

The total stopping time σ ( n ) \sigma _{\infty }(n) of a positive integer n n is the minimal number of iterates of the 3 x + 1 3x+1 function needed to reach the value 1 1 , and is + +\infty if no iterate of n n reaches 1 1 . It is shown that there are infinitely many positive integers n n having a finite total stopping time σ ( n ) \sigma _{\infty }(n) such that σ ( n ) > 6.14316 log n . \sigma _{\infty }(n) > 6.14316 \log n. The proof involves a search of 3 x + 1 3x +1 trees to depth 60, A heuristic argument suggests that for any constant γ > γ B P 41.677647 \gamma > \gamma _{BP} \approx 41.677647 , a search of all 3 x + 1 3x +1 trees to sufficient depth could produce a proof that there are infinitely many n n such that σ ( n ) > γ log n . \sigma _{\infty }(n)>\gamma \log n. It would require a very large computation to search 3 x + 1 3x + 1 trees to a sufficient depth to produce a proof that the expected behavior of a “random” 3 x + 1 3x +1 iterate, which is γ = 2 log 4 / 3 6.95212 , \gamma =\frac {2}{\log 4/3} \approx 6.95212, occurs infinitely often.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear dynamics of an operator associated to the Collatz map;Proceedings of the American Mathematical Society;2024-01-11

2. An Automated Approach to the Collatz Conjecture;Journal of Automated Reasoning;2023-04-25

3. The 3x + 1 Conjecture, a Direct Path;American Journal of Computational Mathematics;2023

4. A randomized version of the Collatz 3x+1 problem;Statistics & Probability Letters;2016-02

5. Lower bounds for Z-numbers;Mathematics of Computation;2009-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3