An Automated Approach to the Collatz Conjecture

Author:

Yolcu EmreORCID,Aaronson Scott,Heule Marijn J. H.ORCID

Abstract

AbstractWe explore the Collatz conjecture and its variants through the lens of termination of string rewriting. We construct a rewriting system that simulates the iterated application of the Collatz function on strings corresponding to mixed binary–ternary representations of positive integers. We prove that the termination of this rewriting system is equivalent to the Collatz conjecture. We also prove that a previously studied rewriting system that simulates the Collatz function using unary representations does not admit termination proofs via natural matrix interpretations, even when used in conjunction with dependency pairs. To show the feasibility of our approach in proving mathematically interesting statements, we implement a minimal termination prover that uses natural/arctic matrix interpretations and we find automated proofs of nontrivial weakenings of the Collatz conjecture. Although we do not succeed in proving the Collatz conjecture, we believe that the ideas here represent an interesting new approach.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Reference58 articles.

1. Lagarias, J.C.: The Ultimate Challenge: The $$3x+1$$ Problem. American Mathematical Society, Providence (2010)

2. Lagarias, J.C.: The $$3x+1$$ Problem: An Annotated Bibliography (1963–1999). arXiv:math/0309224 (2011)

3. Lagarias, J.C.: The $$3x+1$$ Problem: An Annotated Bibliography, II (2000–2009). arXiv:math/0608208 (2012)

4. Tao, T.: Almost All Orbits of the Collatz Map Attain Almost Bounded Values. arXiv:1909.03562 (2020)

5. Barina, D.: Convergence verification of the Collatz problem. The Journal of Supercomputing 77(3), 2681–2688 (2021). https://doi.org/10.1007/s11227-020-03368-x

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CaDiCaL 2.0;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3