The convergence of the Ben-Israel iteration for nonlinear least squares problems

Author:

Boggs Paul T.

Abstract

Ben-Israel [1] proposed a method for the solution of the nonlinear least squares problem min x D F ( x ) 2 {\min _{x \in D}}{\left \| {F(x)} \right \|_2} where F : D R n R m F:D \subset {R^n} \to {R^m} . This procedure takes the form x k + 1 = x k F ( x k ) + F ( x k ) {x_{k + 1}} = {x_k} - F’{({x_k})^ + }F({x_k}) where F ( x k ) + F’{({x_k})^ + } denotes the Moore-Penrose generalized inverse of the Fréchet derivative of F. We give a general convergence theorem for the method based on Lyapunov stability theory for ordinary difference equations. In the case where there is a connected set of solution points, it is often of interest to determine the minimum norm least squares solution. We show that the Ben-Israel iteration has no predisposition toward the minimum norm solution, but that any limit point of the sequence generated by the Ben-Israel iteration is a least squares solution.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference20 articles.

1. A Newton-Raphson method for the solution of systems of equations;Ben-Israel, Adi;J. Math. Anal. Appl.,1966

2. P. T. BOGGS, "On the use of Lyapunov theory for the analysis of nonlinear iterative methods," Proc. of 1975 Conference on Information Sciences and Systems, April 2-4, 1975.

3. A stability analysis for perturbed nonlinear iterative methods;Boggs, Paul T.;Math. Comp.,1976

4. Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation;Brown, Kenneth M.;Numer. Math.,1971

5. A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting;Deuflhard, P.;Numer. Math.,1974

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3