Optimal deterministic algorithm generation

Author:

Mitsos AlexanderORCID,Najman Jaromił,Kevrekidis Ioannis G.

Abstract

Abstract A formulation for the automated generation of algorithms via mathematical programming (optimization) is proposed. The formulation is based on the concept of optimizing within a parameterized family of algorithms, or equivalently a family of functions describing the algorithmic steps. The optimization variables are the parameters—within this family of algorithms—that encode algorithm design: the computational steps of which the selected algorithms consist. The objective function of the optimization problem encodes the merit function of the algorithm, e.g., the computational cost (possibly also including a cost component for memory requirements) of the algorithm execution. The constraints of the optimization problem ensure convergence of the algorithm, i.e., solution of the problem at hand. The formulation is described prototypically for algorithms used in solving nonlinear equations and in performing unconstrained optimization; the parametrized algorithm family considered is that of monomials in function and derivative evaluation (including negative powers). A prototype implementation in GAMS is provided along with illustrative results demonstrating cases for which well-known algorithms are shown to be optimal. The formulation is a mixed-integer nonlinear program. To overcome the multimodality arising from nonconvexity in the optimization problem, a combination of brute force and general-purpose deterministic global algorithms is employed to guarantee the optimality of the algorithm devised. We then discuss several directions towards which this methodology can be extended, their scope and limitations.

Funder

National Science Foundation

AFOSR

Defense Advanced Research Projects Agency

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Recursively Recurrent Neural Network (R2N2) Architecture for Learning Iterative Algorithms;SIAM Journal on Scientific Computing;2024-03-06

2. Application of Machine Learning for Optimization;Advances in Business Information Systems and Analytics;2023-05-26

3. Detection of false data attacks in sensor networks based on the APIT location algorithm;International Journal of Autonomous and Adaptive Communications Systems;2023

4. An optimal matching algorithm for e-commerce recommendation information based on matrix decomposition;International Journal of Autonomous and Adaptive Communications Systems;2023

5. Personalized Algorithm Generation: A Case Study in Learning ODE Integrators;SIAM Journal on Scientific Computing;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3