The best constant for 𝐿^{∞}-type Gagliardo-Nirenberg inequalities

Author:

Liu Jian-Guo,Wang Jinhuan

Abstract

In this paper we derive the best constant for the followingLL^{\infty }-type Gagliardo-Nirenberg interpolation inequalityuLCq,,puLq+11θuLpθ,θ=pddp+(pd)(q+1),\begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*}where parametersqqandppsatisfy the conditionsp>d1p>d\geq 1,q0q\geq 0. The best constantCq,,pC_{q,\infty ,p}is given byCq,,p=θθp(1θ)θpMcθd,McRduc,q+1dx,\begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*}whereuc,u_{c,\infty }is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds whenu=Auc,(λ(xx0))u=Au_{c,\infty }(\lambda (x-x_0))for any real numbersAA,λ>0\lambda >0andx0Rdx_{0}\in \mathbb {R}^d. In fact, the generalized Lane-Emden equation inRd\mathbb {R}^dcontains a delta function as a source and it is a Thomas-Fermi type equation. Forq=0q=0ord=1d=1,uc,u_{c,\infty }have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show thatuc,muc,u_{c,m}\to u_{c,\infty }andCq,m,pCq,,pC_{q,m,p}\to C_{q,\infty ,p}asm+m\to +\inftyford=1d=1, whereuc,mu_{c,m}andCq,m,pC_{q,m,p}are the function achieving equality and the best constant ofLmL^m-type Gagliardo-Nirenberg interpolation inequality, respectively.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference34 articles.

1. Problèmes isopérimétriques et espaces de Sobolev;Aubin, Thierry;J. Differential Geometry,1976

2. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model;Blanchet, Adrien;J. Funct. Anal.,2012

3. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions;Blanchet, Adrien;Electron. J. Differential Equations,2006

4. Minimal rearrangements of Sobolev functions;Brothers, John E.;J. Reine Angew. Math.,1988

5. The parabolic-parabolic Keller-Segel model in ℝ²;Calvez, Vincent;Commun. Math. Sci.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competing effects in fourth‐order aggregation–diffusion equations;Proceedings of the London Mathematical Society;2024-07-22

2. The best constant for ^{∞}-type Gagliardo-Nirenberg inequalities;Quarterly of Applied Mathematics;2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3