Geometric cycles, arithmetic groups and their cohomology

Author:

Schwermer Joachim

Abstract

It is the aim of this article to give a reasonably detailed account of a specific bundle of geometric investigations and results pertaining to arithmetic groups, the geometry of the corresponding locally symmetric space X / Γ X/\Gamma attached to a given arithmetic subgroup Γ G \Gamma \subset G of a reductive algebraic group G G and its cohomology groups H ( X / Γ , C ) H^{\ast }(X/\Gamma , \mathbb C) . We focus on constructing totally geodesic cycles in X / Γ X/\Gamma which originate with reductive subgroups H G H \subset G . In many cases, it can be shown that these cycles, to be called geometric cycles, yield non-vanishing (co)homology classes. Since the cohomology of an arithmetic group Γ \Gamma is strongly related to the automorphic spectrum of Γ \Gamma , this geometric construction of non-vanishing classes leads to results concerning, for example, the existence of specific automorphic forms.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference163 articles.

1. I. Agol, Virtual Betti numbers of symmetric spaces, arXiv:math/0611828v1.

2. On reduced exceptional simple Jordan algebras;Albert, A. A.;Ann. of Math. (2),1957

3. An elementary account of Selberg’s lemma;Alperin, Roger C.;Enseign. Math. (2),1987

4. Non-square-integrable cohomology of arithmetic groups;Ash, Avner;Duke Math. J.,1980

5. A note on minimal modular symbols;Ash, Avner;Proc. Amer. Math. Soc.,1986

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3