Arithmetic Trialitarian Hyperbolic Lattices Are Not Locally Extended Residually Finite

Author:

Bogachev Nikolay12,Slavich Leone3,Sun Hongbin4

Affiliation:

1. Department of Computer and Mathematical Sciences , University of Toronto Scarborough, 1095 Military Trail, Toronto, Ontario M1C 1A3 , Canada

2. Institute for Information Transmission Problems , Moscow, Russia

3. Dipartimento di Matematica , Università di Pavia, Via Ferrata 5, 27100 Pavia , Italy

4. Department of Mathematics , Rutgers University - New Brunswick, Hill Center, Busch Campus, Piscataway, NJ 08854 , USA

Abstract

Abstract A group is LERF (locally extended residually finite) if all its finitely generated subgroups are separable. We prove that the trialitarian arithmetic lattices in $\mathbf{PSO}_{7,1}(\mathbb{R})$ are not LERF. This result, together with previous work by the third author, implies that no arithmetic lattice in $\mathbf{PO}_{n,1}(\mathbb{R})$, $n>3$, is LERF.

Funder

Simons Collaboration

PRIN project

INdAM Institute

Publisher

Oxford University Press (OUP)

Reference19 articles.

1. The virtual Haken conjecture;Agol;Doc. Math.,2013

2. Subspace stabilisers in hyperbolic lattices.”;Belolipetsky,2021

3. Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques;Bergeron;Invent. Math.,2013

4. Sur la cohomologie des variétés hyperboliques de dimension 7 trialitaires;Bergeron;Israel J. Math.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3