In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity
v
{\mathrm {v}}
in a closed half-space
H
v
~
=
{
x
∈
R
n
+
1
∣
⟨
x
,
v
~
⟩
≤
0
}
\mathcal {H}_{\widetilde {{\mathrm {v}}}}= \{ x \in \mathbb {R}^{n+1} \mid \langle x, \widetilde {{\mathrm {v}}}\rangle \leq 0 \}
for
⟨
v
,
v
~
⟩
>
0
\langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle > 0
, whereas in a half-space
H
v
~
\mathcal {H}_{\widetilde {{\mathrm {v}}}}
,
⟨
v
,
v
~
⟩
≤
0
\langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle \leq 0
, a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to
v
{\mathrm {v}}
in a right circular cone
C
v
,
a
=
{
x
∈
R
n
+
1
∣
⟨
x
‖
x
‖
,
v
⟩
≤
a
>
1
}
C_{ {{\mathrm {v}}}, a}=\{ x \in \mathbb {R}^{n+1} \mid \langle \frac {x}{\|x\|} , {{\mathrm {v}}} \rangle \leq a > 1 \}
.