Geomorphic changes measured on Dauphin Island, AL, during Hurricane Nate

Author:

Coogan Jeffrey1,Webb Bret2,Smallegan Stephanie2,Puleo Jack3

Affiliation:

1. Dauphin Island Sea Lab, Department of Marine Sciences, University of South Alabama

2. Department of Civil, Coastal, and Environmental Engineering, University of South Alabama

3. Department of Civil and Environmental Engineering, University of Delaware

Abstract

Storm surge and waves from Hurricane Nate in 2017 resulted in large overwash and inundation regions on Dauphin Island, Alabama. The overwash event consisted of the transport of water and sediment over the beach, dune, and barrier island system. Seven transects were established to measure pre- and post-storm survey profiles. Nine wave and water level sensors were deployed in an overwash region and captured the overwash conditions including time-varying water levels and waves. All transects experienced a net loss of sediment from the subaerial region surveyed and a range of inundation and sediment overwash. The results highlight the limits of empirical estimates for evaluating the exposure of backdune regions to overwash and inundation.

Publisher

American Shore and Beach Preservation Association

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3