Synthesis, Drug Likeness and In-vitro Screening of Some Novel Quinazolinone Derivatives for Anti-Obesity Activity

Author:

Modh Pratik G.ORCID,Patel Laxman J.

Abstract

Aim: A series of novel quinazolinone derivates was synthesized and assessed for their ability to inhibitory action on pancreatic lipase. The cyclization of quinazolinone-4(3H)-one derivatives was achieved, whereas carbon-carbon cross coupling reactions were carried out on cyclized quinazolinone-4(3H)-one. This synthesis method afforded corresponding 2, 3 and 6 substituted quinazolin-4(3H)-ones (3a to 3m) with moderate to high yields. Methods: Benzamide derivatives (1a-1b) were synthesized from anthranilic acid using acid-amine reaction, followed by cyclization using catalytic p-toluene sulfonic acid and oxidation using (diacetoxyiodo)benzene to give bromo substituted quinazolin-4(3H)-ones (2a-2b), which were cross coupled to suitable boronic acid using Suzuki-Miyaura condition to obtain desired compound (3a-3m). All synthesized compounds were characterized by FTIR, proton NMR, LC-MS analysis, checked for their drug likeness, absorption and evaluated for in vitro pancreatic lipase inhibition activity. Results: Analytical interpretation of all compounds with infrared, proton NMR and LC-MS spectroscopy confirmed their correct structure. All compounds (3a-3m) show good absorption and have reasonably good molecular properties except 3c and 3m which violate two criteria for Lipinski’s rule. Whereas, Compounds 3l and 3m showed IC50 value of 13.13±0.84 µg/mL and 13.80±1.27 µg/mL respectively comparable to the Orlistat (12.72±0.97µg/mL), a US FDA approved drug for the treatment of obesity. Conclusion: Pancreatic lipase is an important lipolytic enzyme, synthesized and secreted through pancreas, plays an important role in dietary trigycerol absorption and metabolism. Therefore, reducing fat absorption through pancreatic lipase inhibition is a promising strategy to treat obesity. Based upon our findings, compounds 3l and 3m can be further developed as potent anti-obesity agents.

Publisher

Sciencedomain International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3