Investigating the Impact of Machine Learning in Pharmaceutical Industry

Author:

Nagaprasad S.,Padmaja D. L.,Qureshi Yaser,Bangare Sunil L.,Mishra Manmohan,Mazumdar Bireshwar Dass

Abstract

In the pharmaceutical and consumer health industries, artificial intelligence and machine learning played an important role. These technologies are critical for the identification of patients with improved intelligence applications, such as disease detection and diagnostics for clinical testing, for medicine production and predictive forecasts. In recent years, advances in numerous analysis tools and machine learning algorithms have led to novel applications for machine learning in several areas of pharmaceutical science. This paper examines the past, present, and future impacts of machine learning on several areas, including medicine design and discovery. Artificial neural networks are employed in pharmaceutical machine learning because they can reproduce nonlinear interactions typical in pharmaceutical research. AI and learning machines are examined in everyday pharmaceutical needs, industrial and regulatory insights.

Publisher

Sciencedomain International

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrating the AI-Driven Technologies Into Pharmaceutical Service Marketing;Advances in Marketing, Customer Relationship Management, and E-Services;2024-07-26

2. Crowd-Funding using Blockchain Technology;International Journal of Advanced Research in Science, Communication and Technology;2023-06-03

3. The future of pharmacy: How AI is revolutionizing the industry;Intelligent Pharmacy;2023-06

4. Implementing Intelligent Virtual Assistant;International Journal of Advanced Research in Science, Communication and Technology;2023-05-23

5. Optimization of the SAG Grinding Process Using Statistical Analysis and Machine Learning: A Case Study of the Chilean Copper Mining Industry;Materials;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3