Genetic Diversity Based on Morphological Traits of 19 Maize Genotypes Using Principal Component Analysis and GT Biplot

Author:

Al-Naggar A. M. M.,Shafik M. M.,Musa R. Y. M.

Abstract

Among the phenotypic, biochemical, and molecular methods employed in assessment of genetic diversity, the phenotypic method has proven efficient for the assessment, description and classification of germplasm collections to enhance their use in maize breeding. The objectives of the present study were: (i) to assess the extent of genetic diversity in a collection of Egyptian commercial maize hybrids and populations, through field evaluation under water and N stressed and non-stressed conditions, using morphological data based on Principle Component Analysis (PCA), (ii) to measure the genetic distance among these genotypes using UPGMA cluster analysis and (iii) to assess the relationship between grain yield and yield-related traits of maize genotypes using GT-biplot analysis. A two-year field experiment was conducted in a split-split plot design with 3 replications, where 2 irrigation regimes, three N rates and 19 maize genotypes occupied the main plots, sub plots and sub-sub plots, respectively. The germplasm was assessed for 21 agronomic traits. Highly significant differences (P ≤ 0.01) were observed among the maize hybrids and populations for all measured traits.  Results of the GT biplot in the present study indicated that high values of 100-Kernel weight, ears/plant, kernels/plant, kernels/row, plant height, nitrogen use efficiency, nitrogen utilization efficiency, and grain nitrogen content and short ASI could be considered reliable secondary traits for improving grain yield under stressed and non-stressed conditions. The highest genetic distance was found between G9 (SC-2055) and each of G15 (American Early Dent), G18 (Midland) or G19 (Ried Type). The Agglomerative Hierarchical Clustering based on phenotypic data assigned the maize genotypes into five groups. The different groups obtained can be useful for deriving the inbred lines with diverse features and diversifying the heterotic pools.

Publisher

Sciencedomain International

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3