Author:
Yasin Hajar Maseeh,Abdulazeez Adnan Mohsin
Abstract
Image compression is an essential technology for encoding and improving various forms of images in the digital era. The inventors have extended the principle of deep learning to the different states of neural networks as one of the most exciting machine learning methods to show that it is the most versatile way to analyze, classify, and compress images. Many neural networks are required for image compressions, such as deep neural networks, artificial neural networks, recurrent neural networks, and convolution neural networks. Therefore, this review paper discussed how to apply the rule of deep learning to various neural networks to obtain better compression in the image with high accuracy and minimize loss and superior visibility of the image. Therefore, deep learning and its application to different types of images in a justified manner with distinct analysis to obtain these things need deep learning.
Publisher
Sciencedomain International
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献