A High-Throughput Processor for GDN-Based Deep Learning Image Compression

Author:

Shao Hu1ORCID,Liu Bingtao1,Li Zongpeng1,Yan Chenggang1,Sun Yaoqi1ORCID,Wang Tingyu1

Affiliation:

1. Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310000, China

Abstract

Deep learning-based image compression techniques can take advantage of the autoencoder’s benefits to achieve greater compression quality at the same bit rate as traditional image compression, which is more in line with user desires. Designing a high-performance processor that can increase the inference speed and efficiency of the deep learning image compression (DIC) network is important to make this technology more extensively employed in mobile devices. To the best of our knowledge, there is no dedicated processor that can accelerate DIC with low power consumption, and general-purpose network accelerators based on field programmable gate arrays (FPGA) cannot directly process compressed networks, so we propose a processor suitable for DIC in this paper. First, we analyze the image compression algorithm and quantize the data of the network into 16-bit fixed points using a dynamic hierarchical quantization. Then, we design an operation module, which is the core computational part for processing. It is composed of convolution, sampling, and normalization units, which pipeline the inference calculation for each layer of the network. To achieve high-throughput inference computing, the processing elements group (PEG) array with local buffers is developed for convolutional computation. Based on the common components in encoding and decoding, the sampling and normalization units are compatible with codec computation and utilized for image compression with time-sharing multiplexing. According to the control signal, the operation module could change the order of data flow through the three units so that they perform encoding and decoding operations, respectively. Based on these design methods and schemes, DIC is deployed into the Xilinx Zynq ZCU104 development board to achieve high-throughput image compression at 6 different bit rates. The experimental results show that the processor can run at 200 MHz and achieve 283.4 GOPS for the 16 bits fixed-point DIC network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3