LC–MS of oligonucleotides: applications in biomedical research

Author:

Basiri Babak1,Bartlett Michael G1

Affiliation:

1. Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602–2352, USA

Abstract

Recent findings have elucidated numerous novel biological functions for oligonucleotides. Current standard methods for the study of oligonucleotides (i.e., hybridization and PCR) are not fully equipped to deal with the experimental needs arising from these new discoveries. More importantly, as the intracellular capacity of oligonucleotides is being harnessed for biomedical applications, alternative bioanalytical techniques become indispensable in order to comply with ever-increasing regulatory requirements. Owing to its ability to detect oligonucleotides independent of their sequence, LC–MS is emerging as the analytical method of choice for oligonucleotides. In this article, the current applications of LC–MS in the analysis of oligonucleotides, with an emphasis on RNA therapeutics and biomarkers, will be examined. In addition, the theoretical framework of oligonucleotide ESI is carefully inspected with the purpose of identifying the contributing factors to MS signal intensity.

Publisher

Future Science Ltd

Subject

Medical Laboratory Technology,Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3